more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) D'Hooge, R.; De Deyn, P.P. file  url
openurl 
  Title Applications of the Morris water maze in the study of learning and memory Type Journal Article
  Year 2001 Publication Brain Research. Brain Research Reviews Abbreviated Journal Brain Res Brain Res Rev  
  Volume 36 Issue 1 Pages 60-90  
  Keywords Animals; Behavior, Animal/*physiology; Brain/cytology/*physiology; Denervation/adverse effects; Disease Models, Animal; Maze Learning/*physiology; Memory/*physiology; Mice; Nerve Net/cytology/*physiology; Neurotransmitter Agents/metabolism; Rats; Rodentia/anatomy & histology/*physiology; Space Perception/*physiology  
  Abstract The Morris water maze (MWM) was described 20 years ago as a device to investigate spatial learning and memory in laboratory rats. In the meanwhile, it has become one of the most frequently used laboratory tools in behavioral neuroscience. Many methodological variations of the MWM task have been and are being used by research groups in many different applications. However, researchers have become increasingly aware that MWM performance is influenced by factors such as apparatus or training procedure as well as by the characteristics of the experimental animals (sex, species/strain, age, nutritional state, exposure to stress or infection). Lesions in distinct brain regions like hippocampus, striatum, basal forebrain, cerebellum and cerebral cortex were shown to impair MWM performance, but disconnecting rather than destroying brain regions relevant for spatial learning may impair MWM performance as well. Spatial learning in general and MWM performance in particular appear to depend upon the coordinated action of different brain regions and neurotransmitter systems constituting a functionally integrated neural network. Finally, the MWM task has often been used in the validation of rodent models for neurocognitive disorders and the evaluation of possible neurocognitive treatments. Through its many applications, MWM testing gained a position at the very core of contemporary neuroscience research.  
  Call Number Serial 1556  
Permanent link to this record
 

 
Author (up) Kidokoro, Y.; Kuromi, H.; Delgado, R.; Maureira, C.; Oliva, C.; Labarca, P. file  url
openurl 
  Title Synaptic vesicle pools and plasticity of synaptic transmission at the Drosophila synapse Type Journal Article
  Year 2004 Publication Brain Research. Brain Research Reviews Abbreviated Journal Brain Res Brain Res Rev  
  Volume 47 Issue 1-3 Pages 18-32  
  Keywords  
  Abstract Our knowledge on the Drosophila neuromuscular synapse is rapidly expanding. Thus, this synapse offers an excellent model for studies of the molecular mechanism of synaptic transmission and synaptic plasticity. Two synaptic vesicle (SV) pools have been identified and characterized using a fluorescent styryl dye, FM1-43, to stain SVs. They are termed the exo/endo cycling pool (ECP), which corresponds to the readily releasable pool (RRP) defined electrophysiologically, and the reserve pool (RP). These two pools were identified first in a temperature-sensitive paralytic mutant, shibire, and subsequently confirmed in wild-type larvae. The ECP participates in synaptic transmission during low frequency firing of presynaptic nerves and locates in the periphery of presynaptic boutons in the vicinity of release sites, while SVs in the RP spread toward the center of boutons and are recruited only during tetanic stimulation. These two pools are separately replenished by endocytosis. Cyclic AMP facilitates recruitment of SVs from the RP to the ECP. Activation of presynaptic metabotropic glutamate receptors recruits SVs from the RP and enhances SV release by elevation of the cAMP level. Memory mutants that have defects in the cAMP/PKA cascade, dunce and rutabaga, exhibit reduced levels of recruitment of synaptic SVs from the RP to the ECP and have limited short-term synaptic plasticity. SV mobilization between the two pools could be a key step for changes in synaptic efficacy. Since a variety of mutants that have distinct defects in synaptic transmission are available for detailed studies of synaptic function, this direction of approach in Drosophila seems promising.

Subject Headings: Animals; Cyclic AMP/metabolism; Drosophila melanogaster/genetics/*metabolism/ultrastructure; Endocytosis/genetics; Exocytosis/genetics; Mutation/genetics; Neuromuscular Junction/genetics/*metabolism/ultrastructure; Neuronal Plasticity/*genetics; Synaptic Transmission/*genetics; Synaptic Vesicles/*metabolism/ultrastructure
 
  Call Number Serial 2286  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: