more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Agnew, M.L.; Carrow, R.N. file  url
doi  openurl
  Title Soil Compaction and Moisture Stress Preconditioning in Kentucky Bluegrass. II. Stomatal Resistance, Leaf Water Potential, and Canopy Temperature Type Journal Article
  Year 1985 Publication Agronomy Journal Abbreviated Journal  
  Volume 77 Issue 6 Pages 878  
  Keywords Soil compaction; Moisture stress; Kentucky bluegrass  
  Abstract In this greenhouse study we investigated the effects of soil compaction and moisture stress preconditioning on stomatal diffusive resistance (Rs), leaf water potential (Ψ1), and canopy minus air temperatures (ΔT) of Kentucky bluegrass (Poa pratensis L. ‘Ram I’). The compaction treatments were: (i) NC = no compaction, (ii) LT = long-term compaction over a 99-day period, and (iii) ST = short-term compaction for 9 days. The compactive treatment was equivalent to 720 J energy. Irrigation regimes were initiated at the same time as LT compaction and were: (i) well-watered = irrigation at −0.045 MPa and (ii) water-stressed = irrigation at −0.400 MPa. Ninety-nine days after initiation of preconditioning treatments, a dry-down cycle was started by watering each treatment to saturation. At this time, we monitored on a daily basis Rs, Ψ1, and ΔT. Under low soil O2, Rs remained low for 2 days and then increased over a 5-day period for all treatments, even though Ψ1 did not change until the fifth day after irrigation (DAI). By DAI 9, Rs declined but then increased between DAI 10 to 13 as soil water potential (Ψs) and Ψ1 decreased. As soil water deficits increased, plants preconditioned to LT compaction or water-stressed exhibited lower Ψ1 (0.2 to 0.4 MPa), higher Rs, and higher Δ (1 to 2°C) compared with uncompacted or well-watered plants. Regardless of the cause for higher Rs (i.e., low soil O2, LT compaction or water-stress preconditioning), the result would be lower photosynthesis and greater high-temperature stress.  
  Call Number Serial 839  
Permanent link to this record
 

 
Author (up) Ambrosone, A.; Costa, A.; Leone, A.; Grillo, S. file  url
doi  openurl
  Title Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints Type Journal Article
  Year 2012 Publication Plant Science : an International Journal of Experimental Plant Biology Abbreviated Journal Plant Sci  
  Volume 182 Issue Pages 12-18  
  Keywords Abscisic Acid/metabolism; Acclimatization/*physiology; Gene Expression Regulation, Plant; Osmotic Pressure/physiology; *Plant Physiological Processes; Plants/genetics; RNA-Binding Proteins/genetics/metabolism/*physiology; Transcription, Genetic  
  Abstract RNA-binding proteins (RBPs) govern many aspects of RNA metabolism, including pre-mRNA processing, transport, stability/decay and translation. Although relatively few plant RNA-binding proteins have been characterized genetically and biochemically, more than 200 RBP genes have been predicted in Arabidopsis and rice genomes, suggesting that they might serve specific plant functions. Besides their role in normal cellular functions, RBPs are emerging also as an interesting class of proteins involved in a wide range of post-transcriptional regulatory events that are important in providing plants with the ability to respond rapidly to changes in environmental conditions. Here, we review the most recent results and evidence on the functional role of RBPs in plant adaptation to various unfavourable environmental conditions and their contribution to enhance plant tolerance to abiotic stresses, with special emphasis on osmotic and temperature stress.  
  Call Number Serial 1226  
Permanent link to this record
 

 
Author (up) Bajji, M.; Kinet, J.-M.; Lutts, S. file  url
openurl 
  Title Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures Type Journal Article
  Year 1998 Publication Plant Science Abbreviated Journal Plant Science  
  Volume 137 Issue 2 Pages 131-142  
  Keywords Atriplex halimus L.; Ion accumulation; Osmotic adjustment; Organic solutes; Salinity; Tissue culture  
  Abstract Salt stress effects on growth, osmotic adjustment, mineral and organic contents and soluble peroxidase activities were determined in roots and leaves of Atriplex halimus and their corresponding callus cultures. Low NaCl doses (150 mM) promoted shoot growth, corroborating the halophilic nature of this species; in these stress conditions, Na+ concentration markedly increased in the leaves indicating that salinity resistance was not associated with the ability of the plants to restrict sodium accumulation in the aerial part. Whole organs and their corresponding calli were able to cope with high NaCl doses but there was no clear correspondence between the physiological behaviour of cell culture and whole plant. For several physiological parameters (osmotic potential (Ψs), mineral content, proline accumulation), roots were less affected by NaCl than leaves while both root and leaf calli behaved in the same way in response to salinity. NaCl-induced modifications of the recorded parameters are discussed in relation to the mechanisms of salinity resistance in this species. Evidence indicated the existence of a cellular basis for salinity resistance in A. halimus, but the expression of this cellular property at organ level appeared to be masked by the physiological complexity of the intact plant and the nature of the whole organ response was apparently determined primarily by regulation mechanisms assigned by the differentiated tissue organization.  
  Call Number Serial 683  
Permanent link to this record
 

 
Author (up) Burgos, A.; Szymanski, J.; Seiwert, B.; Degenkolbe, T.; Hannah, M.A.; Giavalisco, P.; Willmitzer, L. file  url
openurl 
  Title Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light Type Journal Article
  Year 2011 Publication The Plant Journal: for Cell and Molecular Biology Abbreviated Journal Plant J  
  Volume 66 Issue 4 Pages 656-668  
  Keywords Arabidopsis/*metabolism; Biosynthetic Pathways; Fatty Acids/metabolism; Galactolipids/analysis/metabolism; *Light; *Lipid Metabolism; Phosphatidylcholines/analysis/metabolism; Phosphatidylethanolamines/analysis/metabolism; Phosphatidylinositols/analysis/metabolism; Plant Leaves/*metabolism; *Temperature  
  Abstract Although the influence of temperature, particularly cold, on lipid metabolism is well established, previous studies have focused on long-term responses and have largely ignored the influence of other interacting environmental factors. Here, we present a time-resolved analysis of the early responses of the glycerolipidome of Arabidopsis thaliana plants exposed to various temperatures (4, 21 and 32 degrees C) and light intensities (darkness, 75, 150 and 400 mumol m(-2) s(-1)), including selected combinations. Using a UPLC/MS-based lipidomic platform, we reproducibly measured most glycerolipid species reported for Arabidopsis leaves, including the classes phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG). In addition to known lipids, we have identified previously unobserved compounds, such as 36-C PGs and eukaryotic phospholipids containing 16:3 acyl chains. Occurrence of these lipid species implies the action of new biochemical mechanisms. Exposition of Arabidopsis plants to various light and temperature regimes results in two major effects. The first is the dependence of the saturation level of PC and MGDG pools on light intensity, likely arising from light regulation of de novo fatty acid synthesis. The second concerns an immediate decrease in unsaturated species of PG at high-temperature conditions (32 degrees C), which could mark the first stages of adaptation to heat-stress conditions. Observed changes are discussed in the context of current knowledge, and new hypotheses have been formulated concerning the early stages of the plant response to changing light and temperature conditions.  
  Call Number Serial 302  
Permanent link to this record
 

 
Author (up) DeRidder, B.P.; Crafts-Brandner, S.J. file  url
doi  openurl
  Title Chilling stress response of postemergent cotton seedlings Type Journal Article
  Year 2008 Publication Physiologia Plantarum Abbreviated Journal Physiol Plant  
  Volume 134 Issue 3 Pages 430-439  
  Keywords Betaine/metabolism; Carbon Dioxide/metabolism; *Cold Temperature; Cotyledon/physiology; Gossypium/growth & development/*physiology; Photoperiod; Plant Leaves/physiology; Plant Transpiration; Seedlings/*physiology; *Stress, Physiological; Temperature; Water/physiology  
  Abstract Early season development of cotton is often impaired by sudden episodes of chilling temperature. We determined the chilling response specific to postemergent 13-day-old cotton (Gossypium hirsutum L. cv. Coker 100A-glandless) seedlings. Seedlings were gradually chilled during the dark period and rewarmed during the night-to-day transition. For some chilled plants, the soil temperature was maintained at control level. Plant growth, water relations and net photosynthesis (P(n)) were analyzed after one or three chilling cycles and after 3 days of recovery. Three chilling cycles led to lower relative growth rate (RGR) compared with controls during the recovery period, especially for plants with chilled shoots and roots. Treatment differences in RGR were associated with net assimilation rate rather than specific leaf area. Both chilling treatments led to loss of leaf turgor during the night-to-day transition; this effect was greater for plants with chilled compared with warm roots. Chilling-induced water stress was associated with accumulation of the osmolyte glycine betaine to the same extent for both chilling treatments. Inhibition of P(n) during chilling was related to both stomatal and non-stomatal effects. P(n) fully recovered after seedlings were returned to control conditions for 3 days. We conclude that leaf expansion during the night-to-day transition was a significant factor determining the magnitude of the chilling response of postemergent cotton seedlings.  
  Call Number Serial 1145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: