more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Arias, H.R. file  url
openurl 
  Title Positive and negative modulation of nicotinic receptors Type Journal Article
  Year 2010 Publication Advances in Protein Chemistry and Structural Biology Abbreviated Journal Adv Protein Chem Struct Biol  
  Volume 80 Issue Pages 153-203  
  Keywords Acetylcholine/chemistry/physiology; Allosteric Regulation; Allosteric Site/genetics; Animals; Cholinergic Antagonists/*pharmacology/therapeutic use; Crystallography, X-Ray; Humans; Ion Channel Gating/drug effects; Mice; Nicotinic Agonists/*pharmacology/therapeutic use; Protein Structure, Tertiary; Receptors, Nicotinic/*chemistry/*physiology; Structure-Activity Relationship  
  Abstract Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.  
  Call Number Serial 1886  
Permanent link to this record
 

 
Author (up) Benarroch, E.E. file  url
openurl 
  Title Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease Type Journal Article
  Year 2008 Publication Neurology Abbreviated Journal Neurology  
  Volume 70 Issue 12 Pages 964-968  
  Keywords Allosteric Regulation/drug effects/physiology; Animals; Brain/drug effects/*metabolism/*physiopathology; Brain Diseases/drug therapy/*metabolism/*physiopathology; Excitatory Amino Acid Agonists/pharmacology/therapeutic use; Excitatory Amino Acid Antagonists/pharmacology/therapeutic use; Glutamic Acid/*metabolism; Humans; Neural Pathways/drug effects/metabolism/physiopathology; Receptors, Metabotropic Glutamate/drug effects/*metabolism; Synaptic Transmission/drug effects/physiology  
  Abstract  
  Call Number Serial 326  
Permanent link to this record
 

 
Author (up) Bertrand, D.; Gopalakrishnan, M. file  url
openurl 
  Title Allosteric modulation of nicotinic acetylcholine receptors Type Journal Article
  Year 2007 Publication Biochemical Pharmacology Abbreviated Journal Biochem Pharmacol  
  Volume 74 Issue 8 Pages 1155-1163  
  Keywords Allosteric Regulation; Animals; Binding Sites; Dose-Response Relationship, Drug; Humans; Receptors, Nicotinic/*chemistry/*drug effects; alpha7 Nicotinic Acetylcholine Receptor  
  Abstract Allosteric modulation refers to the concept that proteins could exist in multiple conformational states and that binding of allosteric ligands alters the energy barriers or “isomerization coefficients” between various states. In the context of ligand gated ion channels such as nicotinic acetylcholine receptors (nAChRs), it implies that endogenous ligand acetylcholine binds at the orthosteric site, and that molecules that bind elsewhere on the nAChR subunit(s) acts via allosteric interactions. For example, studies with the homomeric alpha7 nAChRs indicate that such ligand interactions can be well described by an allosteric model, and that positive allosteric effectors can affect energy transitions by (i) predominantly affecting the peak current response (Type I profile) or, (ii) both peak current responses and time course of agonist-evoked response (Type II profile). The recent discovery of chemically heterogeneous group of molecules capable of differentially modifying nAChR properties without interacting at the ligand binding site illustrates the adequacy of the allosteric model to predict functional consequences. In this review, we outline general principles of the allosteric concept and summarize the profiles of novel compounds that are emerging as allosteric modulators at the alpha7 and alpha4beta2 nAChR subtypes.  
  Call Number Serial 1877  
Permanent link to this record
 

 
Author (up) Bertrand, D.; Gopalakrishnan, M. file  url
openurl 
  Title Allosteric modulation of nicotinic acetylcholine receptors Type Journal Article
  Year 2007 Publication Biochemical Pharmacology Abbreviated Journal Biochem Pharmacol  
  Volume 74 Issue 8 Pages 1155-1163  
  Keywords Allosteric Regulation; Animals; Binding Sites; Dose-Response Relationship, Drug; Humans; Receptors, Nicotinic/*chemistry/*drug effects; alpha7 Nicotinic Acetylcholine Receptor  
  Abstract Allosteric modulation refers to the concept that proteins could exist in multiple conformational states and that binding of allosteric ligands alters the energy barriers or “isomerization coefficients” between various states. In the context of ligand gated ion channels such as nicotinic acetylcholine receptors (nAChRs), it implies that endogenous ligand acetylcholine binds at the orthosteric site, and that molecules that bind elsewhere on the nAChR subunit(s) acts via allosteric interactions. For example, studies with the homomeric alpha7 nAChRs indicate that such ligand interactions can be well described by an allosteric model, and that positive allosteric effectors can affect energy transitions by (i) predominantly affecting the peak current response (Type I profile) or, (ii) both peak current responses and time course of agonist-evoked response (Type II profile). The recent discovery of chemically heterogeneous group of molecules capable of differentially modifying nAChR properties without interacting at the ligand binding site illustrates the adequacy of the allosteric model to predict functional consequences. In this review, we outline general principles of the allosteric concept and summarize the profiles of novel compounds that are emerging as allosteric modulators at the alpha7 and alpha4beta2 nAChR subtypes.  
  Call Number Serial 1887  
Permanent link to this record
 

 
Author (up) Briggs, C.A.; Gronlien, J.H.; Curzon, P.; Timmermann, D.B.; Ween, H.; Thorin-Hagene, K.; Kerr, P.; Anderson, D.J.; Malysz, J.; Dyhring, T.; Olsen, G.M.; Peters, D.; Bunnelle, W.H.; Gopalakrishnan, M. file  url
openurl 
  Title Role of channel activation in cognitive enhancement mediated by alpha7 nicotinic acetylcholine receptors Type Journal Article
  Year 2009 Publication British Journal of Pharmacology Abbreviated Journal Br J Pharmacol  
  Volume 158 Issue 6 Pages 1486-1494  
  Keywords Allosteric Regulation; Animals; Avoidance Learning/drug effects; Azabicyclo Compounds/administration & dosage/*pharmacology; Behavior, Animal/drug effects; Cell Line; Cognition Disorders/drug therapy/physiopathology; Dose-Response Relationship, Drug; Furans/administration & dosage/*pharmacology; Humans; Male; Mice; Nicotinic Agonists/*pharmacology; Oocytes/drug effects/metabolism; Oxadiazoles/administration & dosage/*pharmacology; Pyridazines/pharmacology; Pyrroles/pharmacology; Rats; Receptors, Nicotinic/*drug effects/metabolism; Xenopus laevis; alpha7 Nicotinic Acetylcholine Receptor  
  Abstract BACKGROUND AND PURPOSE: Several agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) have been developed for treatment of cognitive deficits. However, agonist efficacy in vivo is difficult to reconcile with rapid alpha7 nAChR desensitization in vitro; and furthermore, the correlation between in vitro receptor efficacy and in vivo behavioural efficacy is not well delineated. The possibility that agonists of this receptor actually function in vivo as inhibitors via desensitization has not been finally resolved. EXPERIMENTAL APPROACH: Two structurally related alpha7 nAChR agonists were characterized and used to assess the degree of efficacy required in a behavioural paradigm. KEY RESULTS: NS6784 activated human and rat alpha7 nAChR with EC(50)s of 0.72 and 0.88 microM, and apparent efficacies of 77 and 97% respectively. NS6740, in contrast, displayed little efficacy at alpha7 nAChR (<2% in oocytes, < or =8% in GH4C1 cells), although its agonist-like properties were revealed by adding a positive allosteric modulator of alpha7 nAChRs or using the slowly desensitizing alpha7V274T receptor. In mouse inhibitory avoidance (IA) memory retention, NS6784 enhanced performance as did the 60% partial agonist A-582941. In contrast, NS6740 did not enhance performance, but blocked effects of A-582941. CONCLUSIONS AND IMPLICATIONS: Collectively, these findings suggest that a degree of alpha7 nAChR agonist efficacy is required for behavioural effects in the IA paradigm, and that such behavioural efficacy is not due to alpha7 nAChR desensitization. Also, a partial agonist of very low efficacy for this receptor could be used as an inhibitor, in the absence of alpha7 nAChR antagonists with favourable CNS penetration.  
  Call Number Serial 1881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: