more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kosova, K.; Vitamvas, P.; Prasil, I.T.; Renaut, J. file  url
openurl 
  Title Plant proteome changes under abiotic stress--contribution of proteomics studies to understanding plant stress response Type Journal Article
  Year 2011 Publication Journal of Proteomics Abbreviated Journal J Proteomics  
  Volume 74 Issue 8 Pages 1301-1322  
  Keywords Arabidopsis/genetics; Cold Temperature/adverse effects; Droughts; Gene Expression Profiling; Herbicides/pharmacology; Hot Temperature/adverse effects; Metals, Heavy/adverse effects; Oryza sativa/genetics; Plant Proteins/*genetics; Plants/*genetics; Protein Processing, Post-Translational; Proteome/*genetics; Stress, Physiological/*genetics  
  Abstract Plant acclimation to stress is associated with profound changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. In this review, proteomics studies dealing with plant response to a broad range of abiotic stress factors--cold, heat, drought, waterlogging, salinity, ozone treatment, hypoxia and anoxia, herbicide treatments, inadequate or excessive light conditions, disbalances in mineral nutrition, enhanced concentrations of heavy metals, radioactivity and mechanical wounding are discussed. Most studies have been carried out on model plants Arabidopsis thaliana and rice due to large protein sequence databases available; however, the variety of plant species used for proteomics analyses is rapidly increasing. Protein response pathways shared by different plant species under various stress conditions (glycolytic pathway, enzymes of ascorbate-glutathione cycle, accumulation of LEA proteins) as well as pathways unique to a given stress are discussed. Results from proteomics studies are interpreted with respect to physiological factors determining plant stress response. In conclusion, examples of application of proteomics studies in search for protein markers underlying phenotypic variation in physiological parameters associated with plant stress tolerance are given.  
  Call Number Serial 229  
Permanent link to this record
 

 
Author (up) Lorkovic, Z.J. file  url
doi  openurl
  Title Role of plant RNA-binding proteins in development, stress response and genome organization Type Journal Article
  Year 2009 Publication Trends in Plant Science Abbreviated Journal Trends Plant Sci  
  Volume 14 Issue 4 Pages 229-236  
  Keywords Arabidopsis/genetics/growth & development/*metabolism; Arabidopsis Proteins/genetics/*metabolism/physiology; Gene Expression Regulation, Developmental/drug effects; Gene Expression Regulation, Plant/drug effects; *Genome, Plant; Models, Biological; Protein Binding; RNA Precursors/genetics/metabolism; RNA-Binding Proteins/genetics/*metabolism/physiology; Sodium Chloride/pharmacology  
  Abstract RNA-binding proteins (RBPs) in eukaryotes have crucial roles in all aspects of post-transcriptional gene regulation. They are important governors of diverse developmental processes by modulating expression of specific transcripts. The Arabidopsis (Arabidopsis thaliana) genome encodes for more than 200 different RBPs, most of which are plant specific and are therefore likely to perform plant-specific functions. Indeed, recent identification and analysis of plant RBPs clearly showed that, in addition to the important role in diverse developmental processes, they are also involved in adaptation of plants to various environmental conditions. Clearly, they act by regulating pre-mRNA splicing, polyadenylation, RNA stability and RNA export, as well as by influencing chromatin modification.  
  Call Number Serial 1147  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: