more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) D'Hooge, R.; De Deyn, P.P. file  url
openurl 
  Title Applications of the Morris water maze in the study of learning and memory Type Journal Article
  Year 2001 Publication Brain Research. Brain Research Reviews Abbreviated Journal Brain Res Brain Res Rev  
  Volume 36 Issue 1 Pages 60-90  
  Keywords Animals; Behavior, Animal/*physiology; Brain/cytology/*physiology; Denervation/adverse effects; Disease Models, Animal; Maze Learning/*physiology; Memory/*physiology; Mice; Nerve Net/cytology/*physiology; Neurotransmitter Agents/metabolism; Rats; Rodentia/anatomy & histology/*physiology; Space Perception/*physiology  
  Abstract The Morris water maze (MWM) was described 20 years ago as a device to investigate spatial learning and memory in laboratory rats. In the meanwhile, it has become one of the most frequently used laboratory tools in behavioral neuroscience. Many methodological variations of the MWM task have been and are being used by research groups in many different applications. However, researchers have become increasingly aware that MWM performance is influenced by factors such as apparatus or training procedure as well as by the characteristics of the experimental animals (sex, species/strain, age, nutritional state, exposure to stress or infection). Lesions in distinct brain regions like hippocampus, striatum, basal forebrain, cerebellum and cerebral cortex were shown to impair MWM performance, but disconnecting rather than destroying brain regions relevant for spatial learning may impair MWM performance as well. Spatial learning in general and MWM performance in particular appear to depend upon the coordinated action of different brain regions and neurotransmitter systems constituting a functionally integrated neural network. Finally, the MWM task has often been used in the validation of rodent models for neurocognitive disorders and the evaluation of possible neurocognitive treatments. Through its many applications, MWM testing gained a position at the very core of contemporary neuroscience research.  
  Call Number Serial 1556  
Permanent link to this record
 

 
Author (up) Hassaine, G.; Deluz, C.; Grasso, L.; Wyss, R.; Tol, M.B.; Hovius, R.; Graff, A.; Stahlberg, H.; Tomizaki, T.; Desmyter, A.; Moreau, C.; Li, X.-D.; Poitevin, F.; Vogel, H.; Nury, H. file  url
openurl 
  Title X-ray structure of the mouse serotonin 5-HT3 receptor Type Journal Article
  Year 2014 Publication Nature Abbreviated Journal Nature  
  Volume 512 Issue 7514 Pages 276-281  
  Keywords Amino Acid Sequence; Animals; Binding Sites; Crystallography, X-Ray; Mice; Models, Molecular; Molecular Sequence Data; Neurotransmitter Agents/metabolism; Protein Structure, Quaternary; Protein Structure, Tertiary; Protein Subunits/chemistry/metabolism; Receptors, Serotonin, 5-HT3/*chemistry/metabolism  
  Abstract Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.  
  Call Number Serial 1007  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: