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In their natural environment, bacteria are frequently exposed
to large and rapid temperature changes and, therefore, bacte-
rial cells are equipped with a genetically regulated program to
adapt to these temperature changes ensuring growth and sur-
vival. The best studied of these programs, the heat shock re-
sponse, deals with the adaptation to a sudden increase in tem-
perature, which is an important homeostatic mechanism that
enables cells from animals, plants, and bacteria to survive a
variety of environmental stresses besides heat stress (48, 49).
It is characterized by the transiently increased synthesis of a
number of proteins collectively designated heat shock pro-
teins (hsps). The strong evolutionary conservation of the
heat shock response argues that this response is beneficial for
many kinds of cells and has evolved in order to detect and
deal with the presence of unfolded, misfolded, damaged, or
aggregated polypeptide chains. Furthermore, while some hsps
have essential roles in the synthesis, transport, and folding of
proteins and are often referred to as molecular chaperones
(23), others are ATP-dependent proteases sometimes acting
in concert with chaperones (24). In prokaryotes, the major
hsps are encoded by single genes expressed at a basal level at
all temperatures. Following a temperature upshift, the rates of
expression of these genes abruptly accelerate and in general
gradually decrease after 5 to 10 min. All bacterial heat shock
genes are regulated at the level of transcription either by al-
ternate sigma factors or by repressor proteins (for reviews, see
references 27 and 92).

Two major groups of hsps constitute the heat stress
stimulon of Bacillus subtilis: o®-dependent general stress
proteins (also known as class I hsps and described in chap-
ter 26), which are induced not only by heat but by a
different set of stress and starvation stimuli conferring a
nonspecific multiple stress resistance, and heat-specific
stress proteins, which may exert a specific protective func-
tion against heat stress only. HrcA- and CtsR-dependent
proteins (known as class I and class III hsps, respectively)
belong to this heat-specific group, but ClpP and ClpC may
have an intermediate role between heat-specific and gen-
eral stress protein because of their double stress control.

CLASS | HEAT SHOCK GENES: THE HrcA
REGULON

Discovery

Using gene probes, the dnaK and groEL genes were first
identified and then cloned and sequenced (42, 68, 77, 87).
The groE operon turned out to be bicistronic, consisting of
groES and groEL (Fig. 1A). This genomic organization is
highly conserved among eubacteria and has been described
for all species studied so far; some may contain either an ad-
ditional copy of groEL, such as Streptomyces spp. (45), and
others may inherit up to five copies of the complete groESL
operon, as described for Bradyrhizobium japonicum (18).
Sequencing of the region adjacent to dnaK revealed that
it is flanked by grpE and dnaJ, and upstream of grpE, a fourth
gene named orf39 was identified coding for a protein of un-
known function which turned out to encode the repressor of
both the dnaK and groESL operons (see below). Sequencing
of the whole region disclosed three additional orfs termed
orf35, orf28, and orf50 (29). Therefore, the complete dnaK
operon is heptacistronic (Fig. 1B). While the function of
01f28 and orf50 remains elusive, the deduced protein
sequence of orf35 exhibits significant homology to the ribo-
somal protein L11 methyltransferase encoded by prmA of
Escherichia coli (81). The genomic organization of the dnaK
operons of Bacillus stearothermophilus, Clostridium aceto-
butylicum, and Staphylococcus aureus is comparable to that of

B. subuilis (5, 28, 56, 60).

The HrcA-CIRCE Regulation Mechanism

Both the dnaK and groE operons are preceded by a o®*-type
promoter that is used before and after heat stress (42, 68, 77,
87). Since ¢ is the major sigma factor produced constitu-
tively, some other mechanism(s) must mediate the heat-in-
ducible expression of these two operons. The first hint
toward the elucidation of the regulation mechanism was the
observation of a perfect inverted repeat of a length of 9 bp
separated by a 9-bp spacer, located in both operons between
the transcriptional and translational start sites. Since this
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DegS/DegU two-component system, there is as yet no evi-
dence to suggest that these regulators play a role in the heat
shock induction of sacB expression.

The ykoZ gene, encoding a putative sigma factor, is
strongly induced by heat stress in rich medium, but surpris-
ingly is not induced in synthetic medium. Other stress and
starvation signals tested so far do not induce ykoZ. It is in-
teresting to note that ykoZ mutants grow poorly at 56°C on
agar plates, but the ykoZ-dependent heat shock proteins that
might be responsible for this growth defect have not yet
been discovered (93).
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