more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Yogev, O.; Yogev, O.; Singer, E.; Shaulian, E.; Goldberg, M.; Fox, T.D.; Pines, O. file  url
openurl 
  Title Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response Type Journal Article
  Year 2010 Publication PLoS Biology Abbreviated Journal PLoS Biol  
  Volume 8 Issue 3 Pages e1000328  
  Keywords Cell Nucleus/*metabolism; Cytosol/*metabolism; *DNA Damage; Fumarate Hydratase/genetics/*metabolism; Fumarates/metabolism; Gene Knockdown Techniques; HeLa Cells; Histones/genetics/metabolism; Humans; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism; Isoenzymes/genetics/*metabolism; Kidney Neoplasms/enzymology/genetics; Leiomyomatosis/enzymology/genetics; Mitochondria/*enzymology; Saccharomyces cerevisiae/enzymology/genetics; Saccharomyces cerevisiae Proteins/genetics/metabolism; Tumor Suppressor Proteins/genetics/metabolism  
  Abstract In eukaryotes, fumarase (FH in human) is a well-known tricarboxylic-acid-cycle enzyme in the mitochondrial matrix. However, conserved from yeast to humans is a cytosolic isoenzyme of fumarase whose function in this compartment remains obscure. A few years ago, FH was surprisingly shown to underlie a tumor susceptibility syndrome, Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). A biallelic inactivation of FH has been detected in almost all HLRCC tumors, and therefore FH was suggested to function as a tumor suppressor. Recently it was suggested that FH inhibition leads to elevated intracellular fumarate, which in turn acts as a competitive inhibitor of HPH (HIF prolyl hydroxylase), thereby causing stabilization of HIF (Hypoxia-inducible factor) by preventing proteasomal degradation. The transcription factor HIF increases the expression of angiogenesis regulated genes, such as VEGF, which can lead to high microvessel density and tumorigenesis. Yet this mechanism does not fully explain the large cytosolic population of fumarase molecules. We constructed a yeast strain in which fumarase is localized exclusively to mitochondria. This led to the discovery that the yeast cytosolic fumarase plays a key role in the protection of cells from DNA damage, particularly from DNA double-strand breaks. We show that the cytosolic fumarase is a member of the DNA damage response that is recruited from the cytosol to the nucleus upon DNA damage induction. This function of fumarase depends on its enzymatic activity, and its absence in cells can be complemented by high concentrations of fumaric acid. Our findings suggest that fumarase and fumaric acid are critical elements of the DNA damage response, which underlies the tumor suppressor role of fumarase in human cells and which is most probably HIF independent. This study shows an exciting crosstalk between primary metabolism and the DNA damage response, thereby providing a scenario for metabolic control of tumor propagation.  
  Call Number Serial 1880  
Permanent link to this record
 

 
Author (down) Wiltzius, J.J.W.; Hohl, M.; Fleming, J.C.; Petrini, J.H.J. file  url
openurl 
  Title The Rad50 hook domain is a critical determinant of Mre11 complex functions Type Journal Article
  Year 2005 Publication Nature Structural & Molecular Biology Abbreviated Journal Nat Struct Mol Biol  
  Volume 12 Issue 5 Pages 403-407  
  Keywords Cell Division; DNA, Fungal/genetics/metabolism; DNA-Binding Proteins/*chemistry/genetics/*metabolism; Endodeoxyribonucleases/*metabolism; Exodeoxyribonucleases/*metabolism; Ligands; Meiosis/genetics; Mutation/genetics; Phenotype; Protein Binding; Protein Structure, Tertiary; Recombination, Genetic/genetics; Saccharomyces cerevisiae/genetics/*metabolism; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism; Telomere/metabolism  
  Abstract The Mre11 complex (in Saccharomyces cerevisiae: Mre11, Rad50 and Xrs2) influences multiple facets of chromosome break metabolism. A conserved feature of the Mre11 complex is a zinc-coordinating motif in Rad50 called the Rad50 hook. We established a diploid yeast strain, rad50(hook), in which Rad50 is encoded in halves, one from each of the two RAD50 alleles, with the residues constituting the hook deleted. In all respects, rad50(hook) phenocopies complete Rad50 deficiency. Replacing the hook domain with a ligand-inducible FKBP dimerization cassette partially mitigated all phenotypes in a ligand-dependent manner. The data indicate that the Rad50 hook is critical for Mre11 complex-dependent DNA repair, telomere maintenance and meiotic double-strand break formation. Sister chromatid cohesion was unaffected by Rad50 deficiency, suggesting that molecular bridging required for recombinational DNA repair is qualitatively distinct from cohesin-mediated sister chromatid cohesion.  
  Call Number Serial 1716  
Permanent link to this record
 

 
Author (down) Williams, R.P.; Gott, C.L.; Qadri, S.M.; Scott, R.H. file  url
openurl 
  Title Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens Type Journal Article
  Year 1971 Publication Journal of Bacteriology Abbreviated Journal J Bacteriol  
  Volume 106 Issue 2 Pages 438-443  
  Keywords Anti-Bacterial Agents/*biosynthesis; Bacterial Proteins/biosynthesis; Bacteriological Techniques; Caseins; Cell Division; Chloramphenicol/pharmacology; *Culture Media; Hot Temperature; Hydrogen-Ion Concentration; Oxygen; Pigments, Biological/*biosynthesis; Prodigiosin/biosynthesis; Protein Hydrolysates; Pyrroles/*biosynthesis; Saccharomyces; Serratia marcescens/cytology/drug effects/growth & development/*metabolism; Spectrophotometry; *Temperature; Time Factors  
  Abstract Maximal amounts of prodigiosin were synthesized in either minimal or complete medium after incubation of cultures at 27 C for 7 days. Biosynthesis of prodigiosin began earlier and the range of temperature for formation was greater in complete medium. No prodigiosin was formed in either medium when cultures were incubated at 38 C; however, after a shift to 27 C, pigmentation ensued, provided the period of incubation at 38 C was not longer than 36 hr for minimal medium or 48 hr for complete medium. Washed, nonpigmented cells grown in either medium at 38 C for 72 hr could synthesize prodigiosin when suspended in saline at 27 C when casein hydrolysate was added. These suspensions produced less prodigiosin at a slower rate than did cultures growing in casein hydrolysate at 27 C without prior incubation at 38 C. Optimal concentration of casein hydrolysate for pigment formation by suspensions was 0.4%; optimal temperature was 27 C. Anaerobic incubation, shift back to 38 C, killing cells by heating, or chloramphenicol (25 mug/ml) inhibited pigmentation. Suspensions of washed cells forming pigment reached pH 8.0 to 8.3 rapidly and maintained this pH throughout incubation for 7 days. Measurements of viable count and of protein, plus other data, indicated that cellular multiplication did not occur in suspensions of washed cells during pigment formation. By this procedure utilizing a shift down in temperature, biosynthesis of prodigiosin by washed cells could be separated from multiplication of bacteria.  
  Call Number Serial 1615  
Permanent link to this record
 

 
Author (down) Weaver, T.; Lees, M.; Zaitsev, V.; Zaitseva, I.; Duke, E.; Lindley, P.; McSweeny, S.; Svensson, A.; Keruchenko, J.; Keruchenko, I.; Gladilin, K.; Banaszak, L. file  url
openurl 
  Title Crystal structures of native and recombinant yeast fumarase Type Journal Article
  Year 1998 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 280 Issue 3 Pages 431-442  
  Keywords Binding Sites; Crystallography, X-Ray; Fumarate Hydratase/*chemistry; Fungal Proteins/*chemistry; Models, Molecular; Polymers/chemistry; *Protein Conformation; Saccharomyces cerevisiae/*enzymology; Water/chemistry  
  Abstract Crystal structures for both native and recombinant forms of yeast fumarase from Saccharomyces cerevisiae have been completed to moderate resolution by two separate laboratories. The recombinant form was obtained by the construction of an expression plasmid for Escherichia coli. Despite a high level of amino acid sequence similarity, purification of the eukaryotic enzyme from the wild-type prokaryotic enzyme was feasible. The crystal structure of the native form, NY-fumarase, encompasses residues R22 through M484, while the recombinant form, RY-fumarase, consists of residues S27 through L485. Both crystal structures lack the N-terminal translocation segment. Each subunit of the homo-tetrameric protein has three domains. The active site is formed by segments from each of three polypeptide chains. The results of these studies on the eukaryotic proteins are unique, since the recombinant form was done in the absence of dicarboxylic acid and has an unoccupied active site. As a comparison, native fumarase was crystallized in the presence of the competitive inhibitor, meso-tartrate. Meso-tartrate occupies a position close to that of the bound citrate molecule found in the active site of the E. coli enzyme. This inhibitor participates in hydrogen bonding to an active-site water molecule. The independent determination of the two structures provides further evidence that an active-site water molecule may play an active role in the fumarase-catalyzed reaction.  
  Call Number Serial 1178  
Permanent link to this record
 

 
Author (down) Van de Ven, W.J.; Creemers, J.W.; Roebroek, A.J. file  url
openurl 
  Title Furin: the prototype mammalian subtilisin-like proprotein-processing enzyme. Endoproteolytic cleavage at paired basic residues of proproteins of the eukaryotic secretory pathway Type Journal Article
  Year 1991 Publication Enzyme Abbreviated Journal Enzyme  
  Volume 45 Issue 5-6 Pages 257-270  
  Keywords Animals; Binding Sites; Catalysis; Cloning, Molecular; Drosophila melanogaster; Furin; Humans; Invertebrate Hormones/genetics/metabolism; Mice; Models, Molecular; Multigene Family; Protein Conformation; Protein Precursors/*metabolism; *Protein Processing, Post-Translational; Sequence Homology, Amino Acid; Substrate Specificity; Subtilisins/genetics/*metabolism  
  Abstract Furin, the translational product of the recently discovered fur gene, appears to be the first known mammalian member of the subtilisin family of serine proteases and the first known mammalian proprotein-processing enzyme with cleavage selectivity for paired basic amino acid residues. Structurally and functionally, it resembles the prohormone-processing enzyme, kexin (EC 3.4.21.61), which is encoded by the KEX2 gene of yeast Saccharomyces cerevisiae. Most likely, furin is primarily involved in the processing of precursors of proteins that are secreted via the constitutive secretory pathway. Here, we review the discovery of the fur gene and describe the isolation of cDNA clones corresponding to human and mouse fur and to two fur-like genes of Drosophila melanogaster, Dfur1 and Dfur2. We also compare the structural organization of the various deduced furin proteins to that of yeast kexin, and of other members of the subtilisin family of serine proteases. Furthermore, the biosynthesis of biologically active human and mouse furin is evaluated. Finally, the cleavage specificity for paired basic amino acid residues of human and mouse furin is demonstrated by the correct processing of the precursor for von Willebrand factor.  
  Call Number Serial 524  
Permanent link to this record
 

 
Author (down) Thacker, C.; Rose, A.M. file  url
doi  openurl
  Title A look at the Caenorhabditis elegans Kex2/Subtilisin-like proprotein convertase family Type Journal Article
  Year 2000 Publication BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology Abbreviated Journal Bioessays  
  Volume 22 Issue 6 Pages 545-553  
  Keywords Animals; Caenorhabditis elegans/*enzymology/genetics; Genes, Helminth; Humans; Multigene Family; Mutation; Phylogeny; *Proprotein Convertases; *Saccharomyces cerevisiae Proteins; Subtilisins/chemistry/genetics/*metabolism  
  Abstract Significant advances have recently been made in our understanding of the mechanisms of activation of proteins that require processing. Often this involves endoproteolytic cleavage of precursor forms at basic residues, and is carried out by a group of serine endoproteinases, termed the proprotein convertases. In mammals, seven different convertases have been identified to date. These act in both the regulated secretory pathway for the processing of prohormones and proneuropeptides and in the constitutive secretory pathway, in which a variety of proproteins are activated endoproteolytically. The recently completed sequence of the nematode Caenorhabditis elegans genome affords a unique opportunity to examine the entire proprotein convertase family in a multicellular organism. Here we review the nature of the family, emphasising the structural features, characteristic of the four nematode genes, that supply all of the necessary functions unique to this group of serine endoproteinases. Studies of the C. elegans genes not only provide important information about the evaluation of this gene family but should help to illuminate the roles of these proteins in mammalian systems. BioEssays 22:545-553, 2000.  
  Call Number Serial 522  
Permanent link to this record
 

 
Author (down) Schenone, M.; Dancik, V.; Wagner, B.K.; Clemons, P.A. file  url
openurl 
  Title Target identification and mechanism of action in chemical biology and drug discovery Type Journal Article
  Year 2013 Publication Nature Chemical Biology Abbreviated Journal Nat Chem Biol  
  Volume 9 Issue 4 Pages 232-240  
  Keywords Animals; Biomarkers, Pharmacological/chemistry/*metabolism; *Drug Discovery; *Drug Evaluation, Preclinical; *High-Throughput Screening Assays; Humans; Isotope Labeling; Mass Spectrometry; Molecular Targeted Therapy; Phenotype; RNA Interference; Reverse Genetics; Saccharomyces cerevisiae/drug effects/genetics/metabolism; Small Molecule Libraries/chemistry/*metabolism/pharmacology; Validation Studies as Topic  
  Abstract Target-identification and mechanism-of-action studies have important roles in small-molecule probe and drug discovery. Biological and technological advances have resulted in the increasing use of cell-based assays to discover new biologically active small molecules. Such studies allow small-molecule action to be tested in a more disease-relevant setting at the outset, but they require follow-up studies to determine the precise protein target or targets responsible for the observed phenotype. Target identification can be approached by direct biochemical methods, genetic interactions or computational inference. In many cases, however, combinations of approaches may be required to fully characterize on-target and off-target effects and to understand mechanisms of small-molecule action.  
  Call Number Serial 1592  
Permanent link to this record
 

 
Author (down) Parsons, A.B.; Brost, R.L.; Ding, H.; Li, Z.; Zhang, C.; Sheikh, B.; Brown, G.W.; Kane, P.M.; Hughes, T.R.; Boone, C. file  url
doi  openurl
  Title Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways Type Journal Article
  Year 2004 Publication Nature Biotechnology Abbreviated Journal Nat Biotechnol  
  Volume 22 Issue 1 Pages 62-69  
  Keywords Biotechnology/*methods; Cluster Analysis; Drug Industry/*methods; *Drug Resistance; Fungal Proteins/metabolism; Gene Deletion; *Gene Expression Regulation; Mutation; Pharmacogenetics; Proton-Translocating ATPases/metabolism; Saccharomyces cerevisiae/*genetics; Software  
  Abstract Bioactive compounds can be valuable research tools and drug leads, but it is often difficult to identify their mechanism of action or cellular target. Here we investigate the potential for integration of chemical-genetic and genetic interaction data to reveal information about the pathways and targets of inhibitory compounds. Taking advantage of the existing complete set of yeast haploid deletion mutants, we generated drug-hypersensitivity (chemical-genetic) profiles for 12 compounds. In addition to a set of compound-specific interactions, the chemical-genetic profiles identified a large group of genes required for multidrug resistance. In particular, yeast mutants lacking a functional vacuolar H(+)-ATPase show multidrug sensitivity, a phenomenon that may be conserved in mammalian cells. By filtering chemical-genetic profiles for the multidrug-resistant genes and then clustering the compound-specific profiles with a compendium of large-scale genetic interaction profiles, we were able to identify target pathways or proteins. This method thus provides a powerful means for inferring mechanism of action.  
  Call Number Serial 339  
Permanent link to this record
 

 
Author (down) McPheeters, D.S.; Wise, J.A. url  openurl
  Title Measurement of in vivo RNA synthesis rates Type Journal Article
  Year 2013 Publication Methods in Enzymology Abbreviated Journal Methods Enzymol  
  Volume 530 Issue Pages 117-135  
  Keywords Gene Expression Regulation, Fungal; RNA, Fungal/*genetics; Saccharomyces cerevisiae/*genetics; Schizosaccharomyces/*genetics; Transcription, Genetic; Immobilized DNA/RNA; Immobilized probes; In vivo RNA synthesis rates; Labeled RNA; Nascent transcripts  
  Abstract A technique is described to directly measure ongoing transcription from individual genes in permeabilized cells of either the budding yeast Saccharomyces cerevisiae or the fission yeast Schizosaccharomyces pombe. Transcription run-on (TRO) analysis is used to compare the relative rates of synthesis for specific transcripts in cells grown under different environmental conditions or harvested at different stages of development. As the amount of an individual RNA species present at any given time is determined by its net rate of synthesis and degradation, an accurate picture of transcription per se can be obtained only by directly measuring de novo synthesis of RNA (if you are interested in RNA degradation, see Method for measuring mRNA decay rate in Saccharomyces cerevisiae). Most techniques employed to measure changes in the relative levels of individual transcripts present under different conditions, including Northern analysis (see Northern blotting), RT-PCR (see Reverse-transcription PCR (RT-PCR)), nuclease protection assays (see Explanatory Chapter: Nuclease Protection Assays), and genome-wide assays, such as microarray analysis and high throughput RNA sequencing, measure changes in the steady-state level of a transcript, which may or may not reflect the actual changes in transcription of the gene. Recent studies carried out in fission yeast have demonstrated that increases in the steady-state level (accumulation) of many individual mRNAs occur without any significant changes in transcription rates (McPheeters et al., 2009), highlighting the important role of regulated RNA stability in determining gene expression programs (Harigaya et al., 2006).  
  Call Number Serial 1345  
Permanent link to this record
 

 
Author (down) Mazzoni, C.; Falcone, C. file  url
openurl 
  Title Caspase-dependent apoptosis in yeast Type Journal Article
  Year 2008 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 1783 Issue 7 Pages 1320-1327  
  Keywords Apoptosis--genetics, physiology; Apoptosis Regulatory Proteins--metabolism; Caspases--metabolism; Mitochondria--metabolism; Saccharomyces cerevisiae--genetics, physiology; Saccharomyces cerevisiae Proteins--metabolism; Signal Transduction  
  Abstract Damaging environment, certain intracellular defects or heterologous expression of pro-apoptotic genes induce death in yeast cells exhibiting typical markers of apoptosis. In mammals, apoptosis can be directed by the activation of groups of proteases, called caspases, that cleave specific substrates and trigger cell death. In addition, in plants, fungi, Dictyostelium and metazoa, paracaspases and metacaspases have been identified that share some homologies with caspases but showing different substrate specificity. In the yeast Saccharomyces cerevisiae, a gene (MCA1/YCA1) has been identified coding for a metacaspase involved in the induction of cell death. Metacaspases are not biochemical, but sequence and functional homologes of caspases, as deletion of them rescues entirely different death scenarios. In this review we will summarize the current knowledge in S. cerevisiae on apoptotic processes, induced by internal and external triggers, which are dependent on the metacaspase gene YCA1.  
  Call Number Serial 850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: