more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Favelukes, G.; Stoppani, A.O. url  openurl
  Title Baker's-yeast fumarase, a thiol enzyme Type Journal Article
  Year 1958 Publication (up) Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 28 Issue 3 Pages 654-655  
  Keywords *Hydro-Lyases; Saccharomyces cerevisiae/*metabolism; *Hydrases; *SACCHAROMYCES CEREVISIAE/metabolism  
  Abstract  
  Call Number Grinnell @ engelk @ Serial 483  
Permanent link to this record
 

 
Author Heinisch, J.J. file  url
doi  openurl
  Title Baker's yeast as a tool for the development of antifungal kinase inhibitors--targeting protein kinase C and the cell integrity pathway Type Journal Article
  Year 2005 Publication (up) Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 1754 Issue 1-2 Pages 171-182  
  Keywords Antifungal Agents/*chemistry/metabolism/pharmacology; Cell Cycle/*drug effects; Cell Wall/drug effects/metabolism; Enzyme Inhibitors/*chemistry/metabolism/pharmacology; Humans; MAP Kinase Signaling System/drug effects; Models, Biological; Protein Kinase C/*antagonists & inhibitors/chemistry/drug effects/metabolism; Protein Kinases/genetics/metabolism; Recombinant Fusion Proteins/chemistry/*metabolism; Saccharomyces cerevisiae/chemistry/enzymology/*metabolism; Saccharomyces cerevisiae Proteins/*antagonists & inhibitors/chemistry/drug effects/metabolism  
  Abstract Today, the yeast Saccharomyces cerevisiae is probably the best-studied eukaryotic organism. This review first focuses on the signaling process which is mediated by the unique yeast protein kinase C (Pkc1p) and a downstream mitogen-activated protein kinase (MAPK) cascade. This pathway ensures cellular integrity by sensing cell surface stress and controlling cell wall biosynthesis and progression through the cell cycle. The domain structure of Pkc1p is conserved from yeast to humans. A yeast system for heterologous expression of specific domains in a chimeric yeast/mammalian PKC enzyme (“domain shuffling”) is depicted. It is also proposed how this system could be employed for the study of protein kinase inhibitors in high-throughput screens. Moreover, a reporter assay that allows a quantitative readout of the activity of the cell integrity signaling pathway is introduced. Since a variety of protein kinases take part in the signal transduction, this broadens the range of targets for potential inhibitors.  
  Call Number Serial 554  
Permanent link to this record
 

 
Author Mazzoni, C.; Falcone, C. file  url
openurl 
  Title Caspase-dependent apoptosis in yeast Type Journal Article
  Year 2008 Publication (up) Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 1783 Issue 7 Pages 1320-1327  
  Keywords Apoptosis--genetics, physiology; Apoptosis Regulatory Proteins--metabolism; Caspases--metabolism; Mitochondria--metabolism; Saccharomyces cerevisiae--genetics, physiology; Saccharomyces cerevisiae Proteins--metabolism; Signal Transduction  
  Abstract Damaging environment, certain intracellular defects or heterologous expression of pro-apoptotic genes induce death in yeast cells exhibiting typical markers of apoptosis. In mammals, apoptosis can be directed by the activation of groups of proteases, called caspases, that cleave specific substrates and trigger cell death. In addition, in plants, fungi, Dictyostelium and metazoa, paracaspases and metacaspases have been identified that share some homologies with caspases but showing different substrate specificity. In the yeast Saccharomyces cerevisiae, a gene (MCA1/YCA1) has been identified coding for a metacaspase involved in the induction of cell death. Metacaspases are not biochemical, but sequence and functional homologes of caspases, as deletion of them rescues entirely different death scenarios. In this review we will summarize the current knowledge in S. cerevisiae on apoptotic processes, induced by internal and external triggers, which are dependent on the metacaspase gene YCA1.  
  Call Number Serial 850  
Permanent link to this record
 

 
Author Thacker, C.; Rose, A.M. file  url
doi  openurl
  Title A look at the Caenorhabditis elegans Kex2/Subtilisin-like proprotein convertase family Type Journal Article
  Year 2000 Publication (up) BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology Abbreviated Journal Bioessays  
  Volume 22 Issue 6 Pages 545-553  
  Keywords Animals; Caenorhabditis elegans/*enzymology/genetics; Genes, Helminth; Humans; Multigene Family; Mutation; Phylogeny; *Proprotein Convertases; *Saccharomyces cerevisiae Proteins; Subtilisins/chemistry/genetics/*metabolism  
  Abstract Significant advances have recently been made in our understanding of the mechanisms of activation of proteins that require processing. Often this involves endoproteolytic cleavage of precursor forms at basic residues, and is carried out by a group of serine endoproteinases, termed the proprotein convertases. In mammals, seven different convertases have been identified to date. These act in both the regulated secretory pathway for the processing of prohormones and proneuropeptides and in the constitutive secretory pathway, in which a variety of proproteins are activated endoproteolytically. The recently completed sequence of the nematode Caenorhabditis elegans genome affords a unique opportunity to examine the entire proprotein convertase family in a multicellular organism. Here we review the nature of the family, emphasising the structural features, characteristic of the four nematode genes, that supply all of the necessary functions unique to this group of serine endoproteinases. Studies of the C. elegans genes not only provide important information about the evaluation of this gene family but should help to illuminate the roles of these proteins in mammalian systems. BioEssays 22:545-553, 2000.  
  Call Number Serial 522  
Permanent link to this record
 

 
Author Downing, K.J.; Thomson, J.A. file  url
openurl 
  Title Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi Type Journal Article
  Year 2000 Publication (up) Canadian Journal of Microbiology Abbreviated Journal Can J Microbiol  
  Volume 46 Issue 4 Pages 363-369  
  Keywords Chitinases/*genetics/metabolism; DNA-Binding Proteins/genetics/metabolism; Escherichia coli/genetics; Fabaceae/microbiology; *Pest Control, Biological; Plant Diseases/microbiology; Plants, Medicinal; Plasmids/genetics; Polymerase Chain Reaction/methods; Promoter Regions, Genetic; Pseudomonas fluorescens/*enzymology/*genetics/growth & development/isolation & purification; Repressor Proteins/genetics/metabolism; Rhizoctonia/*growth & development; *Saccharomyces cerevisiae Proteins; Serratia marcescens/enzymology/*genetics; *Telomere-Binding Proteins  
  Abstract An endophytic strain of Pseudomonas fluorescens was isolated from micropropagated apple plantlets and introduced into beans (Phaseolus vulgaris) via their root tips. It was shown to be present as an endophyte in the roots at a level of 1.2 x 10(5) CFU/g fresh weight. The gene coding for the major chitinase of Serratia marcescens, chiA, was cloned under the control of the tac promoter into the broad-host-range plasmid pKT240 and the integration vector pJFF350. Pseudomonas fluorescens carrying tacchiA either on the plasmid or integrated into the chromosome is an effective biocontrol agent of the phytopathogenic fungus Rhizoctonia solani on bean seedlings under plant growth chamber conditions.  
  Call Number Serial 1662  
Permanent link to this record
 

 
Author Van de Ven, W.J.; Creemers, J.W.; Roebroek, A.J. file  url
openurl 
  Title Furin: the prototype mammalian subtilisin-like proprotein-processing enzyme. Endoproteolytic cleavage at paired basic residues of proproteins of the eukaryotic secretory pathway Type Journal Article
  Year 1991 Publication (up) Enzyme Abbreviated Journal Enzyme  
  Volume 45 Issue 5-6 Pages 257-270  
  Keywords Animals; Binding Sites; Catalysis; Cloning, Molecular; Drosophila melanogaster; Furin; Humans; Invertebrate Hormones/genetics/metabolism; Mice; Models, Molecular; Multigene Family; Protein Conformation; Protein Precursors/*metabolism; *Protein Processing, Post-Translational; Sequence Homology, Amino Acid; Substrate Specificity; Subtilisins/genetics/*metabolism  
  Abstract Furin, the translational product of the recently discovered fur gene, appears to be the first known mammalian member of the subtilisin family of serine proteases and the first known mammalian proprotein-processing enzyme with cleavage selectivity for paired basic amino acid residues. Structurally and functionally, it resembles the prohormone-processing enzyme, kexin (EC 3.4.21.61), which is encoded by the KEX2 gene of yeast Saccharomyces cerevisiae. Most likely, furin is primarily involved in the processing of precursors of proteins that are secreted via the constitutive secretory pathway. Here, we review the discovery of the fur gene and describe the isolation of cDNA clones corresponding to human and mouse fur and to two fur-like genes of Drosophila melanogaster, Dfur1 and Dfur2. We also compare the structural organization of the various deduced furin proteins to that of yeast kexin, and of other members of the subtilisin family of serine proteases. Furthermore, the biosynthesis of biologically active human and mouse furin is evaluated. Finally, the cleavage specificity for paired basic amino acid residues of human and mouse furin is demonstrated by the correct processing of the precursor for von Willebrand factor.  
  Call Number Serial 524  
Permanent link to this record
 

 
Author Williams, R.P.; Gott, C.L.; Qadri, S.M.; Scott, R.H. file  url
openurl 
  Title Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens Type Journal Article
  Year 1971 Publication (up) Journal of Bacteriology Abbreviated Journal J Bacteriol  
  Volume 106 Issue 2 Pages 438-443  
  Keywords Anti-Bacterial Agents/*biosynthesis; Bacterial Proteins/biosynthesis; Bacteriological Techniques; Caseins; Cell Division; Chloramphenicol/pharmacology; *Culture Media; Hot Temperature; Hydrogen-Ion Concentration; Oxygen; Pigments, Biological/*biosynthesis; Prodigiosin/biosynthesis; Protein Hydrolysates; Pyrroles/*biosynthesis; Saccharomyces; Serratia marcescens/cytology/drug effects/growth & development/*metabolism; Spectrophotometry; *Temperature; Time Factors  
  Abstract Maximal amounts of prodigiosin were synthesized in either minimal or complete medium after incubation of cultures at 27 C for 7 days. Biosynthesis of prodigiosin began earlier and the range of temperature for formation was greater in complete medium. No prodigiosin was formed in either medium when cultures were incubated at 38 C; however, after a shift to 27 C, pigmentation ensued, provided the period of incubation at 38 C was not longer than 36 hr for minimal medium or 48 hr for complete medium. Washed, nonpigmented cells grown in either medium at 38 C for 72 hr could synthesize prodigiosin when suspended in saline at 27 C when casein hydrolysate was added. These suspensions produced less prodigiosin at a slower rate than did cultures growing in casein hydrolysate at 27 C without prior incubation at 38 C. Optimal concentration of casein hydrolysate for pigment formation by suspensions was 0.4%; optimal temperature was 27 C. Anaerobic incubation, shift back to 38 C, killing cells by heating, or chloramphenicol (25 mug/ml) inhibited pigmentation. Suspensions of washed cells forming pigment reached pH 8.0 to 8.3 rapidly and maintained this pH throughout incubation for 7 days. Measurements of viable count and of protein, plus other data, indicated that cellular multiplication did not occur in suspensions of washed cells during pigment formation. By this procedure utilizing a shift down in temperature, biosynthesis of prodigiosin by washed cells could be separated from multiplication of bacteria.  
  Call Number Serial 1615  
Permanent link to this record
 

 
Author Weaver, T.; Lees, M.; Zaitsev, V.; Zaitseva, I.; Duke, E.; Lindley, P.; McSweeny, S.; Svensson, A.; Keruchenko, J.; Keruchenko, I.; Gladilin, K.; Banaszak, L. file  url
openurl 
  Title Crystal structures of native and recombinant yeast fumarase Type Journal Article
  Year 1998 Publication (up) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 280 Issue 3 Pages 431-442  
  Keywords Binding Sites; Crystallography, X-Ray; Fumarate Hydratase/*chemistry; Fungal Proteins/*chemistry; Models, Molecular; Polymers/chemistry; *Protein Conformation; Saccharomyces cerevisiae/*enzymology; Water/chemistry  
  Abstract Crystal structures for both native and recombinant forms of yeast fumarase from Saccharomyces cerevisiae have been completed to moderate resolution by two separate laboratories. The recombinant form was obtained by the construction of an expression plasmid for Escherichia coli. Despite a high level of amino acid sequence similarity, purification of the eukaryotic enzyme from the wild-type prokaryotic enzyme was feasible. The crystal structure of the native form, NY-fumarase, encompasses residues R22 through M484, while the recombinant form, RY-fumarase, consists of residues S27 through L485. Both crystal structures lack the N-terminal translocation segment. Each subunit of the homo-tetrameric protein has three domains. The active site is formed by segments from each of three polypeptide chains. The results of these studies on the eukaryotic proteins are unique, since the recombinant form was done in the absence of dicarboxylic acid and has an unoccupied active site. As a comparison, native fumarase was crystallized in the presence of the competitive inhibitor, meso-tartrate. Meso-tartrate occupies a position close to that of the bound citrate molecule found in the active site of the E. coli enzyme. This inhibitor participates in hydrogen bonding to an active-site water molecule. The independent determination of the two structures provides further evidence that an active-site water molecule may play an active role in the fumarase-catalyzed reaction.  
  Call Number Serial 1178  
Permanent link to this record
 

 
Author McPheeters, D.S.; Wise, J.A. url  openurl
  Title Measurement of in vivo RNA synthesis rates Type Journal Article
  Year 2013 Publication (up) Methods in Enzymology Abbreviated Journal Methods Enzymol  
  Volume 530 Issue Pages 117-135  
  Keywords Gene Expression Regulation, Fungal; RNA, Fungal/*genetics; Saccharomyces cerevisiae/*genetics; Schizosaccharomyces/*genetics; Transcription, Genetic; Immobilized DNA/RNA; Immobilized probes; In vivo RNA synthesis rates; Labeled RNA; Nascent transcripts  
  Abstract A technique is described to directly measure ongoing transcription from individual genes in permeabilized cells of either the budding yeast Saccharomyces cerevisiae or the fission yeast Schizosaccharomyces pombe. Transcription run-on (TRO) analysis is used to compare the relative rates of synthesis for specific transcripts in cells grown under different environmental conditions or harvested at different stages of development. As the amount of an individual RNA species present at any given time is determined by its net rate of synthesis and degradation, an accurate picture of transcription per se can be obtained only by directly measuring de novo synthesis of RNA (if you are interested in RNA degradation, see Method for measuring mRNA decay rate in Saccharomyces cerevisiae). Most techniques employed to measure changes in the relative levels of individual transcripts present under different conditions, including Northern analysis (see Northern blotting), RT-PCR (see Reverse-transcription PCR (RT-PCR)), nuclease protection assays (see Explanatory Chapter: Nuclease Protection Assays), and genome-wide assays, such as microarray analysis and high throughput RNA sequencing, measure changes in the steady-state level of a transcript, which may or may not reflect the actual changes in transcription of the gene. Recent studies carried out in fission yeast have demonstrated that increases in the steady-state level (accumulation) of many individual mRNAs occur without any significant changes in transcription rates (McPheeters et al., 2009), highlighting the important role of regulated RNA stability in determining gene expression programs (Harigaya et al., 2006).  
  Call Number Serial 1345  
Permanent link to this record
 

 
Author Leskovac, V.; Trivic, S.; Anderson, B.M. file  url
openurl 
  Title Use of competitive dead-end inhibitors to determine the chemical mechanism of action of yeast alcohol dehydrogenase Type Journal Article
  Year 1998 Publication (up) Molecular and Cellular Biochemistry Abbreviated Journal  
  Volume 178 Issue 1-2 Pages 219-227  
  Keywords yeast; alcohol; dehydrogenase; dead-end inhibitors; mechanism of action; dehydrogenases  
  Abstract In this work, we have postulated a comprehensive and unified chemical mechanism of action for yeast alcohol dehydrogenase (EC 1.1.1.1, constitutive, cytoplasmic), isolated from Saccharomyces cerevisiae. The chemical mechanism of yeast enzyme is based on the integrity of the proton relay system: His-51....NAD+....Thr-48....R.CH2OH(H2>O)....Zn<math>++, stretching from His-51 on the surface of enzyme to the active site zinc atom in the substrate-binding site of enzyme. Further, it is based on extensive studies of steady-state kinetic properties of enzyme which were published recently. In this study, we have reported the pH-dependence of dissociation constants for several competitive dead-end inhibitors of yeast enzyme from their binary complexes with enzyme, or their ternary complexes with enzyme and NAD+ or NADH; inhibitors include: pyrazole, acetamide, sodium azide, 2-fluoroethanol, and 2,2,2-trifluorethanol. The unified mechanism describes the structures of four dissociation forms of apoenzyme, two forms of the binary complex E.NAD+, three forms of the ternary complex E.NAD+.alcohol, two forms of the ternary complex E.NADH.aldehyde and three binary complexes E.NADH. Appropriate pKa values have been ascribed to protonation forms of most of the above mentioned complexes of yeast enzyme with coenzymes and substrates.  
  Call Number Serial 1414  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: