more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aertsen, A.; Michiels, C.W. file  url
openurl 
  Title SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants Type Journal Article
  Year 2005 Publication Research in Microbiology Abbreviated Journal Res Microbiol  
  Volume 156 Issue 2 Pages 233-237  
  Keywords Colony Count, Microbial; Culture Media; Escherichia coli--genetics, growth & development; Escherichia coli Proteins--genetics, metabolism; Gene Expression Regulation, Bacterial; Hydrostatic Pressure; Mutation; Protease La--genetics; SOS Response (Genetics); Ultraviolet Rays  
  Abstract High-pressure treatment (>100 MPa) is known to induce several heat shock proteins as well as an SOS response in Escherichia coli. In the current work, we have investigated properties with respect to high-pressure treatment of mutants-deficient in Lon, a pressure-induced ATP-dependent protease that belongs to the heat shock regulon but that also has a link to the SOS regulon. We report that lon mutants show increased pressure sensitivity and exhibit hyperfilamentation during growth after high-pressure treatment. Both phenotypes could be entirely attributed to the action of the SOS protein SulA, a potent inhibitor of the cell division ring protein FtsZ and a specific target of the Lon protease, since they were suppressed by knock-out of SulA. Introduction of the lexA1 allele, which effectively blocks the entire SOS response, also suppressed the high pressure hypersensitivity of lon mutants, but not their UV hypersensitivity. These results indicate the existence of a SulA-dependent pathway of high-pressure-induced cell filamentation, and suggest involvement of the SOS response, and particularly of SulA, in high-pressure-mediated cell death in E. coli strains which are compromised in Lon function.  
  Call Number Serial 301  
Permanent link to this record
 

 
Author (up) Rendueles, E.; Omer, M.K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. file  url
doi  openurl
  Title Microbiological food safety assessment of high hydrostatic pressure processing: A review Type Journal Article
  Year 2011 Publication LWT – Food Science and Technology Abbreviated Journal LWT – Food Science and Technology  
  Volume 44 Issue 5 Pages 1251-1260  
  Keywords High hydrostatic pressure; Risk assessment; Food safety  
  Abstract High hydrostatic pressure (HHP) processing as a novel non-thermal method has shown great potential in producing microbiologically safer products while maintaining the natural characteristics of the food items. Scientific research of the process and its industrial applications has been widespread in the past two decades with many scientific publications describing its uses, advantages and limitations. The review describes the effect of HHP on foodborne pathogenic microorganisms, their structures and adaptive mechanisms, the intrinsic and extrinsic factors that affect its application with a focus on microbiological safety, and research needs. In a risk assessment context, tools and mechanisms in place to monitorize, optimize and validate the process, and procedures for assessing and modelling the lethal effect of the treatment are reviewed.  
  Call Number Serial 733  
Permanent link to this record
 

 
Author (up) Scharf, S.R.; Gerhart, J.C. file  url
openurl 
  Title Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation Type Journal Article
  Year 1983 Publication Developmental Biology Abbreviated Journal Dev Biol  
  Volume 99 Issue 1 Pages 75-87  
  Keywords Animals; Cell Differentiation; Cold Temperature; Cytoplasm/physiology; Cytoskeleton/physiology; Deuterium/pharmacology; Female; Hydrostatic Pressure; Microtubules/physiology; Oocytes/*physiology/radiation effects/ultrastructure; Ultraviolet Rays; Xenopus laevis/*embryology  
  Abstract Exposure of eggs of Xenopus laevis to a temperature of 1.0 degree C for 4 min or a pressure of 8000 psi for 5 min in a critical period before first cleavage results in embryos exhibiting a reduction and loss of structures of the body axis. The deficiencies occur in a craniocaudal progression which is dose dependent. In the extreme, totally axis-deficient embryos with radial symmetry are formed. Maximum sensitivity to cold and pressure occurs at 0.6 of the time from fertilization to first cleavage and extends from approximately 0.4 to 0.8, the period between pronuclear contact and mitosis, and the approximate period of gray crescent formation. The effects of cold and pressure resemble those previously reported for uv irradiation in that (1) the types of axis-deficient embryos produced are morphologically indistinguishable; (2) sensitivity in all cases ends before 0.8; (3) cold and uv effects, although not those of pressure, can be prevented by cotreatment with D2O; and (4) impaired eggs can be rescued by oblique orientation. We interpret these results as follows: during the 0.4-0.8 period the egg reorganizes its contents in a manner critical for subsequent development of the embryonic body axis. The reorganization process involves cytoskeletal elements, some of which are sensitive to cold, pressure, and uv, and protected by D2O. Rescue by oblique orientation can be understood as the result of a gravity-driven reorganization of the egg's contents, supplanting the normal mechanochemical process impaired in treated eggs.  
  Call Number Serial 1169  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: