more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Brooks, J.P.; Adeli, A.; McLaughlin, M.R. file  url
openurl 
  Title Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems Type Journal Article
  Year 2014 Publication Water Research Abbreviated Journal Water Res  
  Volume 57 Issue Pages 96-103  
  Keywords Animal Husbandry/*methods; Animals; Anti-Bacterial Agents/pharmacology; Bacteria/drug effects/*genetics/*isolation & purification; Bacterial Proteins/genetics/metabolism; Drug Resistance, Bacterial/*genetics; Manure/*microbiology; Methicillin-Resistant Staphylococcus aureus/drug effects/genetics/isolation & purification; *Microbiota; RNA, Ribosomal, 16S/genetics/metabolism; Real-Time Polymerase Chain Reaction; Southeastern United States; Sus scrofa; Waste Water/*microbiology; Antibiotic resistance; Campylobacter; Confined animal feeding operation (CAFO); Lagoon wastewater; Salmonella; Swine; Microbiome  
  Abstract The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future “downstream” implications from both an environmental and public health perspective.  
  Call Number Serial 1943  
Permanent link to this record
 

 
Author (up) Kim, S.-J.; Chen, Z.; Essani, A.B.; Elshabrawy, H.A.; Volin, M.V.; Volkov, S.; Swedler, W.; Arami, S.; Sweiss, N.; Shahrara, S. file  url
openurl 
  Title Identification of a Novel Toll-like Receptor 7 Endogenous Ligand in Rheumatoid Arthritis Synovial Fluid That Can Provoke Arthritic Joint Inflammation Type Journal Article
  Year 2016 Publication Arthritis & Rheumatology (Hoboken, N.J.) Abbreviated Journal Arthritis Rheumatol  
  Volume 68 Issue 5 Pages 1099-1110  
  Keywords Animals; Arthritis, Experimental/*immunology; Arthritis, Rheumatoid/*immunology; Blotting, Western; Bone Marrow Cells/drug effects/immunology; Cytokines/genetics/immunology; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Gene Knockdown Techniques; Humans; Macrophages/*immunology; Membrane Glycoproteins/genetics/*immunology; Mice, Knockout; MicroRNAs/genetics/*immunology; Myeloid Cells/*immunology; Quinolines/pharmacology; RNA, Messenger/metabolism; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; Synovial Fluid/*immunology; Toll-Like Receptor 7/antagonists & inhibitors/genetics/*immunology  
  Abstract OBJECTIVE: Levels of Toll-like receptor 7 (TLR-7) are elevated in rheumatoid arthritis (RA), but the impact on RA is unknown because the endogenous ligand for TLR-7 has not been identified. The aim of this study was to identify a TLR-7 endogenous ligand and to determine its role in the pathogenesis of RA. METHODS: The presence of an endogenous TLR-7 ligand, microRNA let-7b (miR-let-7b), was examined by real-time polymerase chain reaction (PCR) analysis. Using RA knockdown cells, TLR-7-knockout mice, or antagonist, the specificity of miR-let-7b as a potential ligand for TLR-7 was tested. The mechanism by which ligation of miR-let-7b to TLR-7 promotes disease was investigated in RA myeloid cells by real-time PCR, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting. We also established the effect of ectopic miR-let-7b expression on arthritic joint inflammation. RESULTS: We found that a TLR-7 endogenous ligand resides mainly in RA synovial fluid macrophages. The GU-rich domain in miR-let-7b was found to be essential for TLR-7 ligation, since miR-147, the positive control for GU, was able to stimulate TLR-7+ myeloid cells, whereas miR-124, the negative, non-GU, control, was not. We demonstrated that miR-let-7b or exosomes containing miR-let-7b could transform the RA and/or mouse naive or antiinflammatory macrophages into inflammatory M1 macrophages via TLR-7 ligation. Consistently, we showed that miR-let-7b provokes arthritis by remodeling naive myeloid cells into M1 macrophages via TLR-7 ligation, since joint swelling and M1 macrophages are absent in TLR-7-deficient mice. CONCLUSION: The results of this study underscore the importance of miR-let-7b ligation to TLR-7 in the joint during the effector phase of RA.  
  Call Number Serial 1915  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: