more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Carriquiry, M.A.; Du, X.; Timilsina, G.R. file  url
doi  openurl
  Title Second generation biofuels: Economics and policies Type Journal Article
  Year 2011 Publication Energy Policy Abbreviated Journal Energy Policy  
  Volume 39 Issue 7 Pages 4222-4234  
  Keywords Bioenergy; Energy crops; Renewable energy  
  Abstract This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (3050%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels.  
  Call Number Serial 771  
Permanent link to this record
 

 
Author (up) Charles, M.B.; Ryan, R.; Ryan, N.; Oloruntoba, R. file  url
doi  openurl
  Title Public policy and biofuels: The way forward? Type Journal Article
  Year 2007 Publication Energy Policy Abbreviated Journal Energy Policy  
  Volume 35 Issue 11 Pages 5737-5746  
  Keywords Biofuels; Public policy; Renewable energy  
  Abstract The use of biofuels has been given much attention by governments around the world, especially in increasingly energy-hungry OECD nations. Proponents have argued that they offer various advantages over hydrocarbon-based fuels, especially with respect to reducing dependence on OPEC-controlled oil, minimizing greenhouse gas (GHG) emissions, and ensuring financial and lifestyle continuity to farmers and agriculturally dependent communities. This paper adds to the continuing technical debate by addressing the issue from a holistic public policy perspective. In particular, it looks at the proposed benefits of biofuels, yet also addresses the implications of increased demand on the global and regional environment, in addition to the economic welfare of developing nations. Furthermore, it posits that short-term reliance on biofuels vis-à-vis other alternative energy sources may potentially inhibit the development and maturation of longer-term technologies that have greater potential to correct the harmful effects of fossil-fuel dependence. In light of this, the manifold policy instruments currently employed or proposed by governments in developed nations to promote biofuels emerge as questionable.  
  Call Number Serial 834  
Permanent link to this record
 

 
Author (up) Duan, H. file  url
openurl 
  Title Emissions and temperature benefits: The role of wind power in China Type Journal Article
  Year 2017 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 152 Issue Pages 342-350  
  Keywords Air Pollution/*prevention & control; China; *Climate Change; Coal/analysis; Global Warming/prevention & control; Greenhouse Effect/*prevention & control; Models, Economic; Models, Theoretical; Power Plants; Renewable Energy; *Wind; *Climate integrated model; *Fossil fuel substitution; *Temperature benefits; *Wind energy  
  Abstract BACKGROUND: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. METHODS: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. RESULTS: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. CONCLUSIONS: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming.  
  Call Number Serial 2104  
Permanent link to this record
 

 
Author (up) Sun, X.; Zhang, B.; Tang, X.; McLellan, B.; Höök, M. file  url
openurl 
  Title Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System Type Journal Article
  Year 2016 Publication Energies Abbreviated Journal Energies  
  Volume 9 Issue 12 Pages 980  
  Keywords EnergyPLAN; energy transition; renewable energy mix; sustainability assessment  
  Abstract Chinese energy consumption has been dominated by coal for decades, but this needs to change to protect the environment and mitigate anthropogenic climate change. Renewable energy development is needed to fulfil the Intended Nationally Determined Contribution (INDC) for the post-2020 period, as stated on the 2015 United Nations Climate Change Conference in Paris. This paper reviews the potential of renewable energy in China and how it could be utilised to meet the INDC goals. A business-as-usual case and eight alternative scenarios with 40% renewable electricity are explored using the EnergyPLAN model to visualise out to the year 2030. Five criteria (total cost, total capacity, excess electricity, CO2 emissions, and direct job creation) are used to assess the sustainability of the scenarios. The results indicate that renewables can meet the goal of a 20% share of non-fossil energy in primary energy and 40%50% share of non-fossil energy in electricity power. The low nuclear-hydro power scenario is the most optimal scenario based on the used evaluation criteria. The Chinese government should implement new policies aimed at promoting integrated development of wind power and solar PV.  
  Call Number Serial 2103  
Permanent link to this record
 

 
Author (up) Xue, B.; Ma, Z.; Geng, Y.; Heck, P.; Ren, W.; Tobias, M.; Maas, A.; Jiang, P.; Puppim de Oliveira, J.A.; Fujita, T. file  url
openurl 
  Title A life cycle co-benefits assessment of wind power in China Type Journal Article
  Year 2015 Publication Renewable and Sustainable Energy Reviews Abbreviated Journal Renewable and Sustainable Energy Reviews  
  Volume 41 Issue Pages 338-346  
  Keywords Co-benefit; Life cycle assessment; Wind power; Renewable energy policy; China  
  Abstract Wind power can help ensure regional energy security and also mitigate both global greenhouse gas and local air pollutant emissions, leading to co-benefits. With rapid installation of wind power equipment, it is critical to uncover the embodied emissions of greenhouse gas and air pollutants from wind power sector so that emission mitigation costs can be compared with a typical coal-fired power plant. In order to reach such a target, we conduct a life cycle analysis for wind power sector by using the Chinese inventory standards. Wind farms only release 1/40 of the total CO2 emissions that would be produced by the coal power system for the same amount of power generation, which is equal to 97.48% of CO2 emissions reduction. Comparing with coal power system, wind farms can also significantly reduce air pollutants (SO2, NOX and PM10), leading to 80.38%, 57.31% and 30.91% of SO2, NOX and PM10 emissions reduction, respectively. By considering both recycling and disposal, wind power system could reduce 2.74×104 t of CO2 emissions, 5.65×104 kg of NOX emissions, 2.95×105 kg of SO2 emissions and 7.97×104 kg of PM10 emissions throughout its life cycle. In terms of mitigation cost, a wind farm could benefit 37.14 US$ from mitigating 1ton of CO2 emissions. The mitigation cost rates of air pollutants were 7.94 US$/kg of SO2, 10.79 US$/kg of NOx, and 80.79 US$/kg of PM10.Our research results strongly support the development of wind power so that more environmental benefits can be gained. However, decentralized wind power developers should consider not only project locations close to the demand of electricity and wind resources, but also the convenient transportation for construction and recycling, while centralized wind power developers should focus on incorporating wind power into the grids in order to avoid wind power loss.  
  Call Number Serial 2105  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: