more information
Search within Results:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) McPheeters, D.S.; Wise, J.A. file  url
openurl 
  Title Measurement of in vivo RNA synthesis rates Type Journal Article
  Year 2013 Publication Methods in Enzymology Abbreviated Journal Methods Enzymol  
  Volume 530 Issue Pages 117-135  
  Keywords Gene Expression Regulation, Fungal; RNA, Fungal/*genetics; Saccharomyces cerevisiae/*genetics; Schizosaccharomyces/*genetics; Transcription, Genetic; Immobilized DNA/RNA; Immobilized probes; In vivo RNA synthesis rates; Labeled RNA; Nascent transcripts  
  Abstract A technique is described to directly measure ongoing transcription from individual genes in permeabilized cells of either the budding yeast Saccharomyces cerevisiae or the fission yeast Schizosaccharomyces pombe. Transcription run-on (TRO) analysis is used to compare the relative rates of synthesis for specific transcripts in cells grown under different environmental conditions or harvested at different stages of development. As the amount of an individual RNA species present at any given time is determined by its net rate of synthesis and degradation, an accurate picture of transcription per se can be obtained only by directly measuring de novo synthesis of RNA (if you are interested in RNA degradation, see Method for measuring mRNA decay rate in Saccharomyces cerevisiae). Most techniques employed to measure changes in the relative levels of individual transcripts present under different conditions, including Northern analysis (see Northern blotting), RT-PCR (see Reverse-transcription PCR (RT-PCR)), nuclease protection assays (see Explanatory Chapter: Nuclease Protection Assays), and genome-wide assays, such as microarray analysis and high throughput RNA sequencing, measure changes in the steady-state level of a transcript, which may or may not reflect the actual changes in transcription of the gene. Recent studies carried out in fission yeast have demonstrated that increases in the steady-state level (accumulation) of many individual mRNAs occur without any significant changes in transcription rates (McPheeters et al., 2009), highlighting the important role of regulated RNA stability in determining gene expression programs (Harigaya et al., 2006).  
  Call Number Serial 1345  
Permanent link to this record
 

 
Author (up) Parsons, A.B.; Brost, R.L.; Ding, H.; Li, Z.; Zhang, C.; Sheikh, B.; Brown, G.W.; Kane, P.M.; Hughes, T.R.; Boone, C. file  url
doi  openurl
  Title Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways Type Journal Article
  Year 2004 Publication Nature Biotechnology Abbreviated Journal Nat Biotechnol  
  Volume 22 Issue 1 Pages 62-69  
  Keywords Biotechnology/*methods; Cluster Analysis; Drug Industry/*methods; *Drug Resistance; Fungal Proteins/metabolism; Gene Deletion; *Gene Expression Regulation; Mutation; Pharmacogenetics; Proton-Translocating ATPases/metabolism; Saccharomyces cerevisiae/*genetics; Software  
  Abstract Bioactive compounds can be valuable research tools and drug leads, but it is often difficult to identify their mechanism of action or cellular target. Here we investigate the potential for integration of chemical-genetic and genetic interaction data to reveal information about the pathways and targets of inhibitory compounds. Taking advantage of the existing complete set of yeast haploid deletion mutants, we generated drug-hypersensitivity (chemical-genetic) profiles for 12 compounds. In addition to a set of compound-specific interactions, the chemical-genetic profiles identified a large group of genes required for multidrug resistance. In particular, yeast mutants lacking a functional vacuolar H(+)-ATPase show multidrug sensitivity, a phenomenon that may be conserved in mammalian cells. By filtering chemical-genetic profiles for the multidrug-resistant genes and then clustering the compound-specific profiles with a compendium of large-scale genetic interaction profiles, we were able to identify target pathways or proteins. This method thus provides a powerful means for inferring mechanism of action.  
  Call Number Serial 339  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations: