|
Borre, Y. E., Moloney, R. D., Clarke, G., Dinan, T. G., & Cryan, J. F. (2014). The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol, 817, 373–403.
Abstract: There is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis. Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that enteric microbiota plays a role in early programming and later response to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communication between gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging, suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.
|
|
|
Brooks, J. P., Adeli, A., & McLaughlin, M. R. (2014). Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Res, 57, 96–103.
Abstract: The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future “downstream” implications from both an environmental and public health perspective.
|
|
|
Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.
Abstract: Veterinary antibiotics (VAs) are widely used in many countries worldwide to treat disease and protect the health of animals. They are also incorporated into animal feed to improve growth rate and feed efficiency. As antibiotics are poorly adsorbed in the gut of the animals, the majority is excreted unchanged in faeces and urine. Given that land application of animal waste as a supplement to fertilizer is often a common practice in many countries, there is a growing international concern about the potential impact of antibiotic residues on the environment. Frequent use of antibiotics has also raised concerns about increased antibiotic resistance of microorganisms. We have attempted in this paper to summarize the latest information available in the literature on the use, sales, exposure pathways, environmental occurrence, fate and effects of veterinary antibiotics in animal agriculture. The review has focused on four important groups of antibiotics (tylosin, tetracycline, sulfonamides and, to a lesser extent, bacitracin) giving a background on their chemical nature, fate processes, occurrence, and effects on plants, soil organisms and bacterial community. Recognising the importance and the growing debate, the issue of antibiotic resistance due to the frequent use of antibiotics in food-producing animals is also briefly covered. The final section highlights some unresolved questions and presents a way forward on issues requiring urgent attention.
|
|
|
Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.
Abstract: Veterinary antibiotics (VAs) are widely used in many countries worldwide to treat disease and protect the health of animals. They are also incorporated into animal feed to improve growth rate and feed efficiency. As antibiotics are poorly adsorbed in the gut of the animals, the majority is excreted unchanged in faeces and urine. Given that land application of animal waste as a supplement to fertilizer is often a common practice in many countries, there is a growing international concern about the potential impact of antibiotic residues on the environment. Frequent use of antibiotics has also raised concerns about increased antibiotic resistance of microorganisms. We have attempted in this paper to summarize the latest information available in the literature on the use, sales, exposure pathways, environmental occurrence, fate and effects of veterinary antibiotics in animal agriculture. The review has focused on four important groups of antibiotics (tylosin, tetracycline, sulfonamides and, to a lesser extent, bacitracin) giving a background on their chemical nature, fate processes, occurrence, and effects on plants, soil organisms and bacterial community. Recognising the importance and the growing debate, the issue of antibiotic resistance due to the frequent use of antibiotics in food-producing animals is also briefly covered. The final section highlights some unresolved questions and presents a way forward on issues requiring urgent attention.
|
|
|
Spellberg, B., & Shlaes, D. (2014). Prioritized current unmet needs for antibacterial therapies. Clin Pharmacol Ther, 96(2), 151–153.
Abstract: As a result of declining new antibacterial approvals and rising antibiotic resistance, society clearly needs new treatments for bacterial infections. Specific areas of unmet need evolve over time owing to changes in resistance patterns and treatment strategies. Our goal here is to describe and prioritize the current areas of greatest unmet need for new antibacterial development based on an understanding of the most serious treatment challenges facing patients and their providers today.
|
|